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In  $ 1  a brief discussion of the general problem of self-excited acoustic oscillations 
within fixed boundaries is given. I n  $ 2  a second-order analysis is developed for the 
special case of rectangular cavities. A nonlinear wave equation is derived for 
essentially arbitrary boundary conditions. The analysis can be extended to other 
cavity geometries provided that the first-order solutions can be expressed in closed 
form. Various applications of the analysis are discussed in $3. It turns out that 
two-dimensional problems of self-excited oscillations generally lead to nonlinear 
equations containing terms with a time lag. It is anticipated that the time lag (rather 
than viscous effects or sound radiation) represents the key to a fundamental 
understanding of the character of the oscillations and the variety of modes appearing 
in self-excited resonators. 

1. Introduction 
In  recent years a substantial effort has been made to understand the physical 

mechanisms and geometric conditions that are responsible for the occurrence of 
self-excited acoustic oscillations of a gas contained in a cavity. Problems of this kind 
are difficult to investigate because the nonlinearity of the acoustic wave motion in 
the confined (or semiconfined) gas is always fundamentally important. In  the absence 
of nonlinearity the corresponding wave equations would be homogeneous, in which case 
the amplitudes as well as the slopes of the solutions would remain undetermined. 
Indeed, the role of nonlinearity is more crucial for self-excited than for forced acoustic 
oscillations. To fix ideas we consider the two following equations for the acoustic 
quantity f (pressure, density, velocity etc.) : 

(1  2 )  

whcre L,  and LD are linear operators. Equation (1.1) has the typical form of a 
(second-order) resonaim equation. The term IT on the left-hand side may denote, for 
example, the periodic velocity of a piston at one end of a resonance tube; the 
expression L,f may account for effects due to the Stokes boundary layer, acoustic 
radiation, compressive viscosity, etc. The quadratic term in (1 .1 )  stems from the 
second-order terms in the Navier-Stokes equations and is clearly important only if 
L, f is not too large. Hence, depending on the strength of the dissipative mechanisms, 
(1.1) may range from the limiting case where only the nonlinear term is important 
to the case of a linear equation. Ir the latter case the resonant amplitude is limit'ed 
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by t,he h e a r  expression L D  f. A particularly interesting equation of the type ( 1 . 1 )  
is Chester's resonance equation, which governs resonant acoustic oscillations in closed 
tubes and has been investigated in detail by Chester (1964) and Keller (1976a).  

Equations of t'he form ( 1  2) are often found in connect'ion with self-excited acoustic 
oscillations. I n  contrast with (1 . l ) ,  where Uis a given function of time, the excitation 
LE f in ( 1  2)  is a linear expression in f.  Hence in this case the dissipative mechanisms, 
accounbed for by the linear expression LD f ,  play an entirely different role to that in 
the case of forced oscillations. They are responsible for the stability of ( 1 . 2 ) .  The 
amplitudes of self-excited oscillations, on the other hand, are always limited by 
nonlinearity. Equat,ions of this t,ype have been studied by Chu (1963), Mitchell, Crocco 
and Sirignano (1969),  Keller (1978a),  and many others. 

This rather simple but fundamental difference between forced and self-excited 
oscillations leads immediately to an interesting question. I n  the case of forced 
oscillations the energy addition bo the confined gas is linear in f ,  dissipation and 
radiation of energy (as expressed by LD) are quadratic in f ,  and shock-wave 
dissipation, which is included through the presence of the quadratic term in ( l . l ) ,  
is of third order. Thus it is possible that the energy addition is balanced by 'linear 
dissipation' only and that nonlinear effects are negligible. In  this case a continuous 
excitation U(t )  leads to a continuous resonant response f ( t ) .  I n  the case of self-excited 
oscillations of the type considered here, however, the occurrence of continuous 
solutions f ( t )  is rather surprising. Considering that both L, f and L D  f are linear in 
f ,  shock-wave dissipation, for example, would be an obvious mechanism capable of 
balancing the energy addition, which is quadratic in f. 

On the other hand i t  is well known that self-excited oscillations are frequenbly close 
to sinusoidal or a t  least continuous. Consequently there must be further possibilities, 
through which amplit,ude nonlinearity (apparently in connection with certain 
properties of the linear terms LEf or L D f )  can act as an amplitude-limiting 
mechanism. Indeed, another effect capable of limiting amplitudes appears if we 
include suitable terms in LEf that  contain one or more time lags (or even a 
convolut'ion integral). Within the framework of a linear stability analysis, for 
example, the boundary conditions are usually considered to be quasistationary, i.e. 
inlet bhrottles, exit nozzles etc. are treated as acoustically compact elements if their 
dimensions are small compared with typical wavelengths produced by the resonator 
under consideration. Often such simplifications are not justified for second-order 
theories, as was indicated above. I n  general the time-dependent character of the 
boundary conditions together with nonlinearity incorporates a further mechanism of 
fundamental importance, which we might call 'self-detuning ' of the resonator. The 
importance of the time lag for chemical reactions was pointed out first by Crocco & 
Cheng (1956), who developed a 'time-lag model', which has been used successfully 
by Mitchell et al. (1969) to derive a nonlinear equation for longitudinal self-excited 
oscillations in rocket motors with concentrated combustion. Their equation has the 
form 

[f(t)-A]F = af(t)+bf(t-to).  (1.3) 

where A ,  a and b are constants and to is essentially the time lag. Although the time 
lag defined by Crocco & Cheng is associated with a characteristic time of combustion 
in the overall processes of burning liquid propellants, the idea can be used in a much 
more general way. If acoustic oscillations in a nearly closed cavity are induced owing 
to  the presence of a flow outside the cavity or if, for instance, a thin wall-bounded 
jet enters a cavity, thus playing the role of a boundary element within the cavity 
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(and possibly acting as a partner for a coupled oscillation), it  is obvious that) t>he 
convective character of the flow leads to time-lag effects. At the present time, 
however, the very difficult subclass of problems concerned with flow-induced 
vibrations will not be considered further. To formulate the basic ideas with respect 
to the problem of nonlinear acoustic oscillabions within fixed boundaries we consider 
the problem of defining appropriate boundary conditions as a separate question. In  
order not to overstep the bounds of the present) paper, but still to i1lust)rate how 
certain boundary conditions lead to wavc equations similar to (1.3), we consider a 
generalized version of Chu's (1963) problem in $3.3. In  this case, however, the reason 
for the appearance of time-lag terms is not the time-dependent character of the 
boundary conditions, but a delay that is associated with the varying phase angles 
of incident and reflected waves along the cavity walls. The treatment of the nonlinear 
acoustical problem would in fact be t'he same for certain flow-induced vibrations, 
although an example of this kind would require a separate extensive consideration 
of the excitation mechanism to define the boundary conditions. It should be pointed 
out that in the case of flow-induced vibrations nonlinearity may also be int>roduced 
by effects accounted for by the boundary conditions. 

Before we can proceed to develop a suitable analysis, the various kinds of self-excited 
acoustic oscillations must be graded appropriately. As the present problems are 
nonlinear we can only discuss certain subclasses of problems on the basis of a 
particular analysis. The most fundamental distinction arises from the choice of the 
boundary conditions. Here we restrict consideration to boundary conditions for the 
particle velocity alone. Thus it is justified to express all quantities as expansions in 
a t>ypical Mach number. If pressure boundary conditions were also included, it would 
be necessary to int>roduce two separat'e expansion schemes for the travelling times 
of waves and their amplitudes (see Keller 1977) in order to account for lowest-order 
amplitude dispersion. Furthermore, we assume that the maximum pressure distur- 
bances are small compared with the mean pressure. Energy addition, dissipation and 
radia.tion are considered t,o be second- (and highcr-) order effects only. 

The problem then consists of two main parts. We have first to find the general 
seeond-order solution and secondly to impose the velocity boundary conditions to 
second order. These two steps will lead to an equation that governs the nonlinear 
wave motion and for which time is the only independent variable. For simplification 
we assume that the attenuation of acoustic waves due to  viscous effects is negligibly 
small. 

Whilst for one-dimensional problems it' is relat'ively easy to adjust' second-order 
so1ut)ions to arbitrary boundary conditions, this represent's the main difficulty of two- 
and three-dimensional problems. It can be overcome by replacing t'he act,ual 
boundary conditions by certain simplified boundary conditions that produce the same 
first-order wavefield. Such a replacement is possible because the boundary conditions 
that belong to a given first-order wavefield are not unique. 

2. Analysis 
As the present problem is nonlinear, and consequently solutions cannot be 

superposed, we must restrict our considerations to a special cavity geometry from 
the beginning of the analysis. Although the subsequent second-order analysis is 
presently restricted to rectangular cavities, it  can be extended to more general 
geometries provided that the general first-order wavefield can be expressed in dosed 
form. 
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As the second-order velocity components for resonant oscillations have already 
been derived by Kellcr (1978 6 )  we can simply state the main results and then proceed 
to formulate the methods to solve the more difficult problem of self-excited 
oscillations. 

If the corners of a rectangular cavity are defined by 

(x, y) = (0, O) ,  (a ,  O) ,  (0. b) .  (a,, h ) ,  (2.1) 

the possible eigenfrequencies are 

(2.2) 

where c, is the undisturbed sound speed, and m and n are non-negative integers, a t  
least one of which is different from zero. For each of these eigenfrequencies there is 
a mode produced by superposition of the four waves 

where 
a n  $,,, = arctan--. 
b m  

We use the small amp1it)ude expansions 

i u = € U 1 + € 2 U 2 + O ( € 3 ) ,  

z j  = t:t'l + + 0(€3),  

co + c = co + €C1 + €2C2 + O(63) 

(2.3) 

(2.4) 

for the x-component u and the y-component 21 of the particle velocity and the sound 
speed co + c. The expansion parameter t: can be interpreted as the square root of the 
maximum Mach number M ,  at  the wall (based upon the velocity components normal 
to the wall). 

For the special case of a piston-driven resonance tube M ,  is the maximum piston 
velocity divided by the mean sound speed in the gas column that is contained in the 
tube (see e.g. Chester 1964). 

6 = 314. (2 .5)  

The first-order quantities can then be expressed as follows : 

(2.6) i €?L1 = a cos $4 {f-- -f++ +f-+ -f+-}, 
ewl = 4 sin $ {f-- -f++ -f-+ +f+->, 

EC1 = B(Y - 1 ) { f - -  +f++ +f- t +f+->. 
where y is the ratio of specific heats and, for convenience, the superscript (m, n) has 
been dropped. These first approximations can now be inserted in the second-order 
terms of the Eulerian equations and a second approximation found by iteration. This 
has been discussed before by Keller (1978b) and is not repeated here, although it 
should be pointed out that  for reasons of symmetry the signs in the definition (2.3) 
have been changed. The iteration is straightforward, though tedious, and leads after 
integration to the results 

a 
at 

cos $ [ ( x - a )  cos $+ (y-b) sin $]-[f?-+f$+] e2u2 = ~ 

y + l  64,: { 
a 

+ [ ( r - a )  cos $-(y-b) sin $];:,[f?++f:-J}+.I(s1 y, t), (2.7) 
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a 
- [ ( r - a )  cos +-(y-bj sin . P I - L ~ ~ + + ~ ~ - I ] + B ( ~ .  at y, t )  (2.8) 

for (0 < + < in). 
The functions A and B can be considered to be sums 

A = A,+AI,, B = BI+BI,, (2.9) 

where A, and B, account for the interaction of waves in the cavity, and disappear 
identically a t  the walls (see corresponding remarks by Keller 1978b). The terms A,, 
and B,, are functions of integration, i.e. cigenfunctions of the linearized Eulerian 
equations, and have the general forms 

(2.10) 
y .  1 X 

~ , , ( s ,  y, t )  = S,: +(t - -  cos a-- sin a ,  a cos ada, 
CO CO 

y ,  

X 
B,,(X, y, t )  = S,: +( t - - -  cos a-- sin a ,  a sin ada. 

CO CO 
(2.11) 

With this it is easy to show that an arbitrary boundary condition at the walls can 
be sabisfied by E U ~ + E ~ U ~  and wl +.A,, as defined by (2.6), (2.7) and (2.8). Knowing 
the boundary conditions, the remaining problem would be to evaluate expressions 
(2.10) and (2.1 1 ). Transformations of second- and third-order equations generated by 
such eigenfunctions may be usefully employed to rewrite in a more suitable form (see 
Keller 1976b) nonlinear equations for one-dimensional wave-propagation problems 
(e.g. the periodic shock-tube problem). For two- or three-dimensional wave- 
propagation problems, however, such an analysis would require a great deal of 
unnecessary algebra. 

The present procedure, chosen to adapt the boundary conditions, is equivalent to 
adjusting the eigenfunctions but requires less algebra and is considerably more 
transparent. It has been applied previously by Keller (1978 b )  for sinusoidal excitation 
at  the walls of a rectangular cavity, and is extended here to arbitrary excitation 
functions. The idea is to define a suitable orthogonal projection that acts as a 
'resonance filt,er ' when applied to the boundary conditions. Without essential loss 
of generality, we define the boundary conditions by 

(2.12) I ~ ( a ,  y, t )  = 0, ,v(x, 6 ,  t )  = 0,  

u(0, y, t )  = u,(y, t ) ,  V ( X ,  0 ,  t )  = V,(% t ) .  

Now we postulate that  an othogonal projection 

P t ( U W 3  V W ) 1  = ( U W E l  V W E )  (2.13) 

can be defined as follows. Let the velocities u, and v, a t  the walls be split into a pair 
of 'resonant excitation functions' uwR and vwR and a pair of 'non-resonant excitation 
functions' uWA and v,A, 

(2.14) U ,  = u,R + u,A, 21, = , u w ~  + V,A. 

such that uWR and vWR produce a uni form rate of en,ergy addition along the ~ a a e f r o n t s  
and the mean energy addition produced by uWA and Z J , ~  is zero. It' will be shown later 
that  the reduced boundary conditions ( u , ~ ,  vWR) can be satisfied by the second-order 
components of the particle velocity defined by (2.7) and (2.8) without using the 
funct>ions A and B,  i.c>. the eigenfunct>ions A,, and B,, become trivial: d,, = B,, E 0. 
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Obviously (2.13) implies 

P H U W A I  v,.4)1= (0, O),  
P [ ( U ~ R t  u w R ) l  = (uwR, uwR). 

As an example we consider the special case defined by 

b = ;a, u,(y, t )  = elcO sin wt ,  vw(x, t )  = czc0 sin (ot-O) ,  

where w a  = con. In  this case u, produces a resonant response of the wavefield in the 
cavity, whereas v, causes a linear response only. I n  other words, only a represents 
a resonant length. Consequently, we find 

(u,R, u,R) = (e1c0 sin w f ,  01, 
(uwA, vWA) = (0, czco  sin (ot--8)) 

P[(U, ,  vw)1 = (Uw,  0). and therefore 

In this simple case i t  is obvious that uWR and uWR provide a uniform rate of energy 
addition along the wavefronts. Here i t  should be pointed out that the present analysis 
is restricted to cases where the amplitudes of non-resonant-excitation functions are 
of the same order of magnitude (or smaller) as the amplitudes of the resonant 
excitation functions. For the previous example this implies 

O(%) 2 O(e2). 

Whcn the solutions for c. for example, are written in the form (see (2.4) and (2.5)) 

c (x ,  y. t )  = M i C l ( x ,  y, t)+Mwc,(s, y, t ) + O ( M i ) ,  (2.15) 

c, is determined by resonant excitation functions. The lowest-order effects of 
non-resonant excitation functions are accounted for by c2. Hence, if we are only 
interested in the lowest-order part M i c ,  of the solution c, it is justified to 'eliminate' 
non-resonant excitation functions O(M,). 

The computation of the projected components ?i,R and zlWR for arbitrary excitation 
func*tions u,, 17, according to  the definition of P is not straightforward but involves 
rather complicated arguments based upon a geometric consideration. To avoid a 
time-consuming derivation we simply state the results and provc their correctness. 
If the boundary conditions u, and v, are defined by (2.12). their projections uwR and 
rWR are given by 

where 0 < q5 < in. (2.18) 

Note that t'he wave-propagation angle q5 should not' assume the 1imit)ing values 0 or 
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%TI before the integrations in (2.16) and (2.17) are carried out, otherwise uWE and vWR 
would he incorrect by a factor of 2, as (2.16) and (2.17) incorporate Fourier integrals 
that  become trivial in both limits. 

Having postulated that (2.16) and (2.17) represent the resonant excitation 
functions uWR and uWR the proof can be given a posteriori by showing first that 
u, - uWR and 21, -vWR are non-resonant excitation functions (see §A1 ofthe appendix), 
and secondly that the boundary conditions (2.16) and (2.17) can be satisfied by the 
reduced second-order velocity components (2.7) and (2.8) (i.e. A,, = B,, = 0) together 
with small first-order corrections that account for the possibility of small deviations 
of the frequencies from the resonant frequencies : 

--&ha cos2 q5 f’ t-- sin # +f’ t+- sin 4 +e3u2(O, 9, t )  = u W ~ ( y ,  t ) ,  (2.19) { ( :  ) ( t  11 
-&Ab sin2 q5 f’ t-- cos q5 +f’ t+- cos # +e2v,(z ,  0, t )  = wWR(x, t ) .  (2.20) H;.“, I ( :  )I 

The first-order correction terms in (2.19) and (2.20) are obtained by inserting the 
boundary conditions eul(u, y, t )  = 0 and t.v,(x, b ,  t )  = 0 in the first-order expressions 
(2.6) for the velocity components and assuming a small deviation Aw = hcowo from 
the resonant angular frequency wo. To ensure second-order smallness of the corrections 
we require (in agreement with the usual restrictions, see e.g. Chester 1964) that  lAw/wo/ 
should not be larger than O(M4) .  

Attention is drawn to the fact that  the terms e2u,(0, y, t )  and E ~ u , ( x ,  0,  t )  and the 
first-order corrections have the same argument structure as (2.16) and (2.17) (see §A2 
of tjhe appendix). This is the key that enables us to eliminate the spatial variables 
and to  reduce the second-order partial differential equations to an ordinary nonlinear 
equation. Thus introducing (2.16) and (2.17) in (2.19) and (2.20) leads with the help 
of (2.7) and (2.8) to 

where 0 < q5 < in. This equation represents the principal result of the present 
analysis. 

After defining the boundary conditions u,(y, t )  and v,(x, t ) ,  the remaining problem 
is to find solutions of (2.21). Here, i t  should be pointed out that  correct limits of (2.21) 
cannot be expected when $ is set equal to one of the limiting values 0 or in (consider, 
for instance, the wavefronts of a genuine two-dimensional mode in a very long and 
narrow rectangular resonator). Nevertheless, the form of the wave equation remains 
unchanged in the two limits. To obtain the correct one-dimensional equations, when 
q5 is set equal to 0 or in, the term within the curly brackets must be divided by 2 
before the integrations are carried out (see also the corresponding remarks below 
(2.18)). Furthermore, the nonlinear term is to be mukiplied by 2 when q5 assumes one 
of the limiting values. The fact that the coefficient of the term within the curly 
bracket>s becomes incorrect in the two limits of 4 is an obvious outcome of the theory 
of Fourier integrals. Less transparent are the incorrect limits of the nonlinear term, 
although (2.21) is clearly compatible with the energy equation, as has been shown 
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by Keller (19786) for forced oscillations. However, the physical reason for this factor 
2 is remarkably simple: for all genuine two-dimensional modes, the total length of 
the wavefront multiplied by the wavelength is equal to four times the resonator area. 
For one-dimensional modes this product is equal to twice the resonator area only. 
Hence, if we compare, for example, shock waves of equal magnitude, we find that 
the energy dissipated per cycle for genuine two-dimensional wavefields is twice as 
large as for one-dimensional wavefields. 

3. Cavity oscillations 

oscillations in rectangular cavities. 
The aim is now to apply the concepts of $ 2  to the calculation of nonlinear 

3.1. One-dirnensional oscillutions 

To recover the one-dimensional wave equation, special versions of which wcrc‘ first 
derivccl by Chu (1963) and Chester (1964), we set the mode angle # equal to zero, 
divide the term within the curly brackets of (2.21) by two, and multiply the nonlinear 
term by two (see the remarks below (2.21)). Thus the integrations become trivial and 
we obtain 

Y + l  1 
h f ’ ( t ) + ~ f ’ ( t ) f ( t ) + - u w ( t j  = 0. 

4c; a 
(3.1) 

3.2. Forced resonant oscillations in  rectangular cutdies 

To illustrate the special case of forced resonant oscillations in cavities we choose a 
wall-displacement motion of the form 

u,(y, t )  = A(y) cos wt + B ( y )  sin wt, 

vw(x, t )  = C ( x )  cos cot+ D ( x )  sin wt ,  

(3.2) 

(3.3) 

and exclude the trivial cases $ = 0 and # = in. Here w is assumed to be within a 
neighbourhood 

l ( w - ~ o ) / w o l  G O ( 4  (3.4) 

of a certain resonant frequency wo defined by the relation (2.2). Thus we have 

(3.5) 

with ‘rn + 0 and n + 0. 

the help of (3.51, to  
Introducing the expressions (3.2) and (3.3) in the wave equation (2.21) leads, with 

where A,,, B,, C, and D,  denote Fourier coefficients and are given by 

(3.7) 

(3.8) 
a a 
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Making use of the linear theory h is easily identified as 

w-wo A = - - .  
0 0  co 

(3.9) 

The wave equation (3.6) may again be recognized as Chester’s equation. It should 
be pointed out that the present problem represents an extension of the corresponding 
problem that was discussed previously by Keller (19783), where the wall-displacement 
motion was restricted to standing waves. However, (2.21) permits consideration of 
arbitrary excitations. 

3.3. Self-excited oscillations in rectangular cavities 
Clearly the most interesting applications of (2.21) concern the problems associated 
with nonlinear self-excited oscillations. I n  particular various jet-driven oscillations 
in cavities can be discussed on the basis of the wave equation (2.21). Typical equations 
obtained from (2.21), after inserting the boundary conditions, are of the form (1.3) 
but often contain the additional time-lag term f’ft-to), i.e. 

df ( t )  d f  ( t - to 1 [ f ( t )  - A]  dt = af( t )  + bf(t - to)  + e ~ dt ‘ 
(3.10) 

An interesting difference, however, is that equations of the type (3.10) (in contrast 
to those of the type (1.3)) do not admit discontinuous solutions (i.e. shock waves). 
Hereby the time lag to appears as a natural consequence of convection and is directly 
related to the jet speed. Often such non-linear wave equations contain more than one 
time lag. 

Here a somewhat simpler example is used to illustrate the time-lag character of 
self-excited oscillations. Following Chu (1963) we define a pressure-sensitive velocity 
boundary condition of the form (see (2.4)) 

After introducing (3.11) and (3.12) in (2.21) we obtain, with the help of (2.6), 

+ J o u [ f ( t + z c o s  @ ) + 2 f ( t ) + f ( t z  cos $)]B(E)dE} = 0. (3.13) 

It is easy to  verify that all periodic solutions of (3.13) are antisymmetric about their 
zeros, which leads immediately to 

h = 0. (3.14) 

In  this context it is important to keep in mind that the mean value off must be 
zero, as required by linear acoustic theory. With (3.13) we have obtained an equation 
where two ‘ time-lag integrals ’ (i.e. convolution integrals) appear rather than one or 
more ‘ time-lag terms’ only. Nevertheless, the numerical treatment of (3.13) is 
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relatively simple. As a basis for the subsequent discussion we now specify the 
boundary conditions as follows : 

A(y) = S(Y-YY,), B(x)  = 0, (3.15) 

where 6 denotes the Dirac delta function. 
However, it  should be pointed out that, although the specification (3.15) is 

convenient, it  does not lead to an essential simplification 8,s far as the numerical 
treatment of (3.13) is concerned, and the methods given below can readily be applied 
for any other choice of A and B. 

The special case defined by (3.15) corresponds to the rather more realistic situation 
of a concentrated zone of combustion. Introducing (3.15) in (3.13) yields 

sin q5 ) +2f ( t )+ f  ( t - A  ; sin q5 )} = 0. (3.16) 

Making use of the substitutions 

2Yo (3.17). (3.18) 
b 

t = 7-  sin q5, 70 = - 
Cn 6 ’  

y-1  ec, 
y + l  a 

f(t) = 4- -h(7)  sin q5, (3.19) 

(3.16) can be writt,en in the form 

(3.20) 

For the special case where 7n = 0 we obtain Chu’s (1963) equation, for which we find 
the solutions 

dh 
hCE7$8h(7+70) + 2h(7) + h(7--0)} = 0. 

h , ( 7 + 7 , )  = 

where m is a positive integer and H is defined by 

1 (7 > 0) 

- 1  (7 < 0) 
H ( 7 )  = [ 0 (7 = 0 ) ) .  (3.22) 

The expressions (3.21) represent sawtooth waves, where for the fundamental mode 
( ITZ = 1 )  the period is 2. The nonlinear character of (3.20) does not permit superposition 
of the solutions (3.21). Hence the presence of a particular mode defined by (3.21) 
excludes all other modes (with the same mode angle q5) unless a (random) disturbance 
favouring a different mode happens to be sufficiently strong to produce a mode 
transition. This very interesting property, which also involves the hysteresis character 
of mode transitions, can be discussed with the help of the energy equation. 

If 70 is different from zero, (3.20) can be integrated numerically using an iteration 
method that is similar to that used by Mitchell (1967) to integrate (1.3), with the 
simplification, however, that  h = 0 and the solutions are antisymmetric about their 
zeros. To obtain the solution hn (corresponding to the fundamental mode), for 
example, we set 71 = 1 and for formal reasons introduce the substitution 

= --h0(7). (3.23) 
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0.8 

FIGURE 1 .  Fundamental mode according to  (3.20) for different values of To.  

For the special case where 70 = 0 we have from (3.21) 

L0(7)=7  ( - 1 < 7 < 1 ) ,  (3.24) 

where L0(7+2) =-ho(7).  

KO, for the following iteration. Subsequent approximations KO, 
As long as 70 is not too large it is convenient to use (3.24) as a first approximation 

to  the solution 

(3.25) 

are obtained from 

for 0 d 7 < 1 ,  where 

KO, n( -7)  = -LO, n ( 7 ) ,  5, n ( 7 + 2 )  = 60, n ( 7 ) .  

It is interesting to note that the it'eration defined by (3.26) is rapidly convergent. 
Solutions for different values of 70 are shown in figure 1. 

3.4. Concluding remarks 

The analysis presented in $2 led to the wave equation (2.21), which governs nonlinear, 
resonant (or nearly resonant) acoustic wavefields in rectangular cavities for essentially 
arbitrary boundary conditions. The equation can be applied to both forced and 
self-excited oscillations. The investigation of self-excited oscillations based upon 
(2.21) in general leads to second-order equations (similar to (1.3) and (3.10)) 
containing terms with a time lag. Such terms appear both as a result of a ' space lag ' 
(similar to that discussed in $3.3) and also owing to the convective character of 
boundary conditions (e.g. in jet-driven cavities). It has been shown that a time lag 
may appear as a natural outcome of the second-order analysis and that given 
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boundary conditions can simultaneously play the role of resonant excitations 
functions for a certain mode and the role of non-resonant excitation functions for 
other modes. These two facts appear to represent the keys to a fundamental 
understanding of the character of the oscillations and the variety of modes appearing 
in self-excited resonators. It should be pointed out that ,  unlike to in the present 
analysis, the time lag discussed by Mitchell et al. (1969) is based upon a characteristic 
time of combustion and represents an artifice within the framework of one-dimensional 
acoustics. 

Finally, the problem of mode transitions should be discussed briefly. An important 
consequence of the nonlinearity of (2.21) is the exclusion of the simultaneous presence 
of oscillations with the same mode angle $. Thus the selection of modes depends very 
much on the initial conditions. For a particular one-dimensional case this problem 
has been investigated by Mortell & Seymour (1973), who considered the evolution 
of self-sustained oscillations. 

Suppose, for instance, that  in a jet-driven cavity a certain mode m, is unstable in 
a mass-flow interval &,A < Q < Q l B  of the exciting jet, and another mode m2 is 
unstable in the interval Q2A < Q < QZB, where Q 1 A  < QZA < Q I B  < Q2B.  Then if Q3 

(QZA < Q3 < Q I B )  is reached by decreasing Q ,  mode m2 will appear. On the other hand, 
if Q3 is reached by increasing Q ,  m, appears, provided that there are no disturbances. 
Hence different modes may appear for exactly the same equilibrium conditions, a 
form of hysteresis, the appearance of which is well known in wind instruments. 
However, oscillations with different mode angles may appear simultaneously. This 
is possible because resonant excitation functions of a certain mode appear to  be 
non-resonant for any other mode with a different mode angle, and the wave-interaction 
terms vanish (to second order) identically a t  the walls ofthe resonator. In  other words, 
if PI and P, define the orthogonal projections associated with the modes W L ~  and m, 
i t  is possible that 

The work included in this paper represents part of a study carried out to satisfy 
the requirements of a Habilitationsschrift for the Swiss Federal Institute of Technology. 
The author would like to  offer sincere thanks to Dr M. P. Escudier for many helpful 
discussions and for carefully reading the manuscript. Grateful acknowledgement is 
also extended for the permission of BBC (Brown Boveri & Company Limited) to make 
use of the facilities at the BBC Research Centre. 

Appendix 
A . l .  The pressure disturbance in the cavity can be written in the form 

For the proof that uWA = U ,  - uWR and vwA = V, - vwR, where uwR and v , ~  are given 
by (2.16) and (2.17), are non-resonant excitation functions we have to  show that the 
mean rate of energy addition to the cavity is zero : 
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(J: p ( 0 ,  Y, t ) I u w ( y ,  t)-%vR(Y, t ) ! d y )  

+ ( JOU p(.G 0, t )  {‘uw(x, t )  -‘uwR(X, t ) )  d X  = 0, ( A  2 )  ) 
where the angular brackets ( ) denote time averages. When the expressions (2.16), 
(3.17) and (4.1) are introduced in (A 2) we obtain, after dividing (A 2) by .ypO/4c0, 

We consider two typical terms that are obtained after multiplying the sums on the 
left-hand side of (A 3) : 

t+g sin $) J;u,(y, t+- r sin 
CO 

After a suitable shift of the origin on the time axis, the first term (upper sign in the 
argument off ) becomes 

-( cos2 26 $ Sbf( t ) fuw(y ,  0 0 t+?lsin$ CO 

After renaming the dummy variable 
time axis we obtain 

as y and a further shift of the origin on the 

8 cos2 $ ( s: f ( t  - sin 4) u,(y,t) d y ) .  
CO 

The second term defined by (A 4) (lower sign in the argument o f f )  becomes, after 
a suitable shift of the origin on the time axis, 

Making use of the periodicity condition 

t + - c o s $  - f t - - c o s $  f ( , D o  >-c, 1 
and the mean-value condition (required by linear acoustic theory) 

we can easily show that the term (A 7)  disappears identically. 
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All other terms on the left-hand side of (A 3) can be discussed by analogy to t’he 
terms (A 4). After this i t  is easy to show that (A 3) is an identity. 

A.8. Without an essential loss of generality we restrict the consideration to exactly 
resonant oscillations (i.e. h = 0). Making use of A,,  = 0 and A,(O, y, t )  = 0,  we obtain 
from (2.7) a t  lr = 0 

Y+l s2u2(0, y, t )  = --a COS’ q5 x 32c; 

and at, x = a, with the help of A,(u, y, t )  = 0 and the periodicity condition 
f ( t  + (a/co) cos 4) = f(t - @ / G o )  cos q5), 

€2uz(a, y, t )  = 0. 

From (8.8) we obtain a t  y = 0 

e2w2(x, 0, t)=--bsin2q5 Y+l x - f 2 ( t + E c o s q 5 ) .  a 2 

32c; k=k1  at CO 
(A 12) 

and a t  y = b 

c ~ z ) ~ ( T ,  b, t )  = 0, (A 13) 

where use has been made of BII = 0, BI(x ,  0, t )  = &(T,  a,  t )  = 0 and the periodicity 
condition f ( t+(b /c , )  sin q5) = f ( t - ( b / c , )  sin q5).  Both (2.16) and (A 10) represent 
superpositions of two waves that run in the positive and negative direction along the 
y-axis with the speeds f co/sin q5 respectively. As the two characteristic variables 
t + y  sin q5/co of the two wave functions are independent, equating (2.16) and (A 10) 
yields two equations. After substitution of the expression (2.16) and (A 10) in 

uwR(y, t )  -€2u,(o, y, t )  = 0, 
we obtain 

where 

751 = t f y  sin q5/co (A 16) 
are the independent characteristic variables. Thus, two equations for f are obtained 
by putting the two expressions for 1 = 1 within the curly brackets of (A 15) 
(separately) equal to zero. 

It is easy to see that for h = 0 both equations are identical with (2.21). The same 
is true for the two equations which are obtained from equating the wave functions 
(2.17) and (A 12). Thus the proof is given that the boundary conditions (2.16) and 
(2.17) can be satisfied by the reduced second-order boundary conditions, and that 
(2.16) and (2.17) also represent resonant excitation functions according to the 
definitions (2.13) and the subsequent remarks. 
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